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Abstract. Transport properties of one-dimensional Kronig–Penney models with binary
correlated disorder are analysed using an approach based on classical Hamiltonian maps. In this
method, extended states correspond to bound trajectories in the phase space of a parametrically
excited linear oscillator, while the on-site potential of the original model is transformed to an
external force. We show that in this representation the two-probe conductance takes a simple
geometrical form in terms of evolution areas in phase space. We also analyse the case of a
generalN -mer model.

1. Introduction

The random-dimer model, a tight-binding model with correlated disorder, introduced in
references [1, 2], has attracted considerable attention due to the presence of transparent
states in an otherwise disordered one-dimensional system [1–9]. In the present paper we
address the issue of the spectrum of the random-dimer Kronig–Penney (RDKP) model [10]
and extensions using the same Hamiltonian approach as was applied earlier in the context
of tight-binding models [9]. Using techniques from dynamical systems theory [11], we
construct a Poincaré map that turns the Kronig–Penney model into an equivalent tight-
binding model, and study the latter through a two-dimensional map corresponding to a
classical linear oscillator with a parametric perturbation given in the form of periodicδ-
kicks [9]. The amplitudes of these kicks are defined by the site potential of the tight-binding
model. In this representation, extended states of the tight-binding model are represented
through bounded trajectories in the phase space of the Hamiltonian map. Furthermore, in
this representation the two-probe conductance is related to the time evolution (under the
Hamiltonian map) of areas initially defined by the basis unit vectors. This new approach
provides an effective and simple tool for use in achieving an understanding of transport
properties, and the structure of eigenstates, as well as for deriving analytical expressions.
In particular, one can easily determine fully transparent states for the general case whereN

sites are correlated.
In the following section we summarize briefly the Hamiltonian map approach used in

reference [9], and apply it in the context of the RDKP model. In section 3 we analyse
transport properties through a new expression for conductance, while in section 4 we give
our conclusions.

§ E-mail addresses: izrailev@vxinpb.inp.nsk.su; izrailev@physics.spa.umn.edu.
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2. The Hamiltonian map approach

2.1. The time-dependent linear map

The model of interest is the one-dimensional Schrödinger equation with an array ofδ-
function potentials:

Eφ(z) = −d2φ(z)

dz2
+

L∑
n=1

εnδ(z − zn)φ(z). (1)

Equation (1) defines the Kronig–Penney model, whereE is the eigenenergy of the stationary
states,εn is the strength of the potential, andz denotes the space, while we take the positions
of the δ-functions to be regularly spaced(zn = n). The tight-binding model corresponding
to equation (1) is [11]

φn+1+ φn−1 = vnφn vn = 2 cos(q)+ εn sin(q)

q
(2)

with q2 ≡ E, φn ≡ φ(z = n); equation (2) can be written equivalently as a two-dimensional
mapMn, i.e. (

xn+1

yn+1

)
=
(
vn −1
1 0

)(
xn
yn

)
(3)

whereφn = xn andyn = φn−1. An eigenstate of equation (2) is a ‘trajectory’ of the map of
equation (3). Straightforward diagonalization of this map leads to the eigenvalues

λ±n =
vn ± i

√
4− vn2

2
= e±iµn

where the phaseµn is introduced by the relationvn = 2 cosµn. For |vn| < 2 we obtain
a stable map rotation with phaseµn. For |vn| = 2 we find the curves separating regions
of allowed and forbidden energies, determined through the equationsq = (2k + 1)π , for
ε = −2q cot(q/2), and q = 2kπ , for ε = 2q tan(q/2), with k = 0, 1, 2, . . .. To under-
stand the origin of the resonant states in the RDKP model resulting when adjacent pairs
of random energiesεn coincide [10], we consider the sequenceεn which consists of one
dimer only, i.e. where all of the values ofεn are equal toε1 except two values for which
we haveεm = εm+1 = ε2. From the property of the map eigenvalues found previously
we observe that this unique dimer with energyε2 does not influence the trajectories of the
map of equation (3) when the total phase advanceµm +µm+1 = 2µm through the dimer is
equal toπ or 2π . Since the latter valueµm = π is forbidden, from the stability conditions,
the resonant energyq2

cr ≡ Ecr is defined byµm = π/2 giving −2qcr/ε2 = tan(qcr ). As a
result, for the general case of randomly distributed dimersε1 andε2, there are two resonant
values:

qcr = −ε1,2 tan(qcr )

2
(4)

for which dimers of the first type,ε1, or of the second,ε2, have no influence on the
transparent states. One should note that since tan(qcr ) is a π -periodic function and takes
values in(−∞,+∞), we have an infinite set of critical energiesqcr (two in every interval
[(2k − 1)π/2, (2k + 1)π/2]) [10]. However, for the first allowed band defined through the
condition|vn| = 2, the disorder strengthε must be greater than a critical valueεcr = −2 in
order to have resonant states. The critical disorder for reflectionless modes to appear arises
only in the first band of the spectrum.
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Figure 1. The phase diagram showing the criticalεcr -values as functions of the block sizeN .

The previous analysis can be extended to the general case of anN -mer (two values
ε1 and ε2 appear in blocks of lengthN ) where the resonant energy is defined through the
following condition:

µN = π

N
,

2π

N
,

3π

N
,

4π

N
, · · · , (j + 1)π

N
j = 0, 1, 2, . . . , N − 2. (5)

We note that as the block sizeN increases, the number of resonant states proportional to
2(N − 1) increases as well. In the first zone, in particular, the disorder strength should be
smaller than a critical strengthεcr (N) for this to happen. The latter is obtained through
the equation 2 cos(qcr ) + ε1,2sin(qcr )/qcr = 2 cosµN that gives the corresponding critical
wavevectors. Equivalently,εcr is obtained through

sinq

cosq − cosµN
= −2q

εcr
. (6)

The resonances inside the first band appear whenever the derivative of the left-hand side of
equation (6) atq = 0 is less than−2/εcr , and thus

εcr (N) = 2(cos(µN)− 1). (7)

In the phase diagram of figure 1 we distinguish three regions: region I, which contains
no resonant states; region II, where some resonant states appear; and region III, where all
resonant states are concentrated. The borders of region II start atε = −2 for N = −2 (the
RDKP case) and are given by the curve for equation (7) withµN = π/N (upper bound)
andµN = (N −1)π/N (lower bound), and approach zero and−4 respectively asN →∞.
We recall that for the perfect Kronig–Penney lattice the range of accessibleε-values within
the first energy band is [−4,+∞). We further note that the lower border corresponds to
the existence of only one resonant state, while as we are going towards the upper border
more resonances appear. The upper critical curve delimits region III in which all system
resonances are found.
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(a)

(b)

Figure 2. The phase space of the map of equation (13) forp0 = x0 = 1. (a) One value of
ε2 in the sequenceε: · · · ε1ε1ε1ε2ε1ε1ε1 · · · for qcr = 11.4; ε1 = 0; ε2 = 9.758 85. (b) Two
values ofε2 (one dimer) in the sequenceε: · · · ε1ε1ε1ε2ε2ε1ε1ε1 · · · for ε1 = 0; ε2 = 9.758 85;
qcr = 11.4. We note that there is a point outside the ellipse representing the kick to theε1-
trajectory by the firstε2-value. The secondε2-value kicks the trajectory back to the ellipse.
(c) Dimers of typeε2, randomly (with probabilityQ = 0.5) distributed in the sequenceε for
ε1 = 0, ε2 = 9.758 85 andqcr = 11.4.

By introducing a new variablepn+1 = xn+1 − xn playing a role similar to momentum,
we obtain through equation (3) a new map representation:

pn+1 = pn + fnxn
xn+1 = xn + pn+1

(8)
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(c)

Figure 2. (Continued)

wherefn = vn − 2 and has the same eigenvalues as the original map (3). In the map of
equation (8), ellipses correspond toεn = ε1 for all n, and a defect at sitem with εm = ε2

results in a kick into another ellipse (figure 2(a)), while correlated defects lead to a return
to the original ellipse, since the total phase advanceµ = µm + µm+1 = π (figure 2(b)).
When a random mixture of dimers with energyε2 is embedded in a chain with energyε1,
we obtain a phase-space trajectory similar to the one in figure 2(c). We observe two ellipses
corresponding toε1- and ε2-values respectively. The second ellipse is formed by points
occurring every time the first site of a dimer is encountered by the map. In the general case
of a correlatedM-block under the condition that the total sum

∑M
n=1µn of phase shifts is

equal tomπ , for any sequence withm integer, the trajectory always returns to the ellipse
associated with the ‘perfect’ sites to the left and to the right of the scattering potential.

2.2. The parametric linear oscillator

Another useful representation of the original model of equation (2), similar to the map of
equation (8) but more convenient for the analysis of the localization length, can be obtained
through two successive maps [9]:

p̃n = pn + Anxn
x̃n = xn

(9)

and

pn+1 = p̃n cosµ0− x̃n sinµ0

xn+1 = p̃n sinµ0+ x̃n cosµ0.
(10)

When the maps of equation (9) and equation (10) are combined, the result is a form of
equation (2), namely

xn+1+ xn−1 = (2 cosµ0+ An sinµ0)xn. (11)
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Comparing with equation (2), one can establish the correspondencesµ0 = q and
An = εn/q between the parametersq andεn in the original model (2), and the parameters
µ0 andAn of the map of equations (9) and (10). The latter map has a clear meaning since
the map of equation (9) corresponds to an instant linear kick of the strengthAn resulting
in the change of the momentumpn, and the map of equation (10) describes free rotation
in the phase plane(p, x) defined by the angleµ0. The dynamical system modelled by
equations (9) and (10) is that of a linear oscillator with a periodic parametrical perturbation
with a Hamiltonian [9]

H̃ = µ0p
2

2
+ µ0x

2

2
− 1

2
x2δ̃1(t) δ̃1(t) ≡

∞∑
n=−∞

Anδ(t − n). (12)

We note that by integrating equation (1) between two successiveδ-kicks of the potential,
we obtain equation (10), while integration over a kick leads to equation (9) with a new
kick strengthAn = εn. By comparing equation (1) with equations (9) and (10) we find the
significance of the variablepn: it is the rescaled (with respect toq = √E) first derivative
of the local amplitude functionφ just before thenth kick, i.e.pn = (dφ/dz)z=zn/q.

For the dimer case defined by the two values ofε1, ε2, we can set without loss of
generalityε1 = 0. As a result, the motion corresponding toεn = ε1 is represented by the
circle in the phase plane(p, x), and resonant behaviour results when, after a given number
of kicks with εn = ε2, the trajectory returns to this circle. An example of this behaviour
is given in figure 3(a) forq = qcr = 11.4 andε2 = 9.758 85. A similar behaviour for the
case of a trimer,N = 3, is illustrated in figure 3(b) forε2 = 1.25 andq = qcr = 1.489.
We observe that the trajectory is bounded in the phase space.

The above scheme is also valid for the much more general case where the locations
of the δ-functions zn in the original model, equation (1), are not equidistant and can be
taken from an arbitrary distribution. In this case equation (10) has the same form provided
that we make the substitutionµ0 → µTn = qTn, whereTn corresponds to random periods
of the kicks in the Hamiltonian approach (12). In the original model of equation (1),Tn
indicates the random distance between two successive lattice sites, i.e.Tn = zn+1− zn. The
critical valueqcr for the dimer is obtained directly from equation (11) using the relation
2 cosµN = 2 cosµTn +An sinµTn with µN = π/2 (see equation (5)). As a result, we obtain
tan(qcrTn) = −ε/(2qcr) where bothTn and εn are related to the same lattice sitezn as in
equation (1). Therefore, we conclude that in the case of a generalized dimer where time
displacementsTn and the on-site potential are paired in such a way thatTn = Tn+1 = T2

andεn = εn+1 = ε2, the condition for the critical energy will be similar to the one obtained
previously, but with the changeµ0→ µTn = µ2 = qT2.

2.3. Nearly resonant states

The representation of the model of equation (2) used in section 2.2 allows for the study of
global properties of eigenstates. In particular, the resonant delocalized states correspond to
a bounded motion described by the maps of equations (8), (9) and (10). Localized states on
the other hand are represented by unbounded trajectories that escape from the origin of phase
space(p, x). This is illustrated in figure 4 for the case of random dimers with non-resonant
values ofq. The exponential increase of a distance from the origin(p = x = 0) is related
to the localization length of the corresponding eigenstate. In order to study the dependence
of the localization lengthl for nearly resonant states, it is useful to pass to action-angle
variables(r, θ) for the map of equations (9) and (10) using the definitionsx = r cosθ and
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(a)

(b)

Figure 3. The phase space of the map of (16) and (17) forp0 = x0 = 1 andQ = 0.5, ε1 = 0.
(a) N = 2 (dimer); qcr = 11.4; ε2 = 9.778 85. (b)N = 3 (trimer); qcr = 1.489; ε2 = 1.25.
The length of sequenceε is equal toL = 1000.

p = r sinθ . We obtain a map for the actionr given by

r2
n+1 = r2

nD
2
n D2

n = (1+ A2
n cos2 θn + An sin 2θn) (13)
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(a)

(b)

Figure 4. Nearly resonant states for a dimer(N = 2). Comparing with the resonant states
shown in figures 2(c) and 3(a), nearly resonant states correspond to the unbounded (fort →∞)
motion with a slow spread of the points in the phase space. (a)q = 11.399; ε2 = 9.758 85.
(b) q = 11.390; ε2 = 9.758 85. (c)q = 11.38; ε2 = 9.758 85.

where the transformation for cosθn and sinθn is given by the relations

cosθn+1 = D−1
n {cos(θn + µ0)− An cosθn sinµ0}

sinθn+1 = D−1
n {sin(θn + µ0)+ An cosθn cosµ0}.

(14)



Transport properties of 1D Kronig–Penney models 1785

(c)

Figure 4. (Continued)

The relations of equations (13) and (14) can be used instead of the common transfer-matrix
approach for the determination of the localization lengthl. The latter is equal to the inverse
of the Lyapunov exponentγ defined as

γ = lim
N→∞

1

N

N−1∑
n=0

ln

(
rn+1

rn

)
(15)

where the ratiorn+1/rn = Dn is given by (13).
The advantage of this approach in the finding of the Lyapunov exponentγ , in comparison

to the standard transfer-matrix method, is that there is no divergence during iterations. It is
interesting to note that equations (13) and (14) can be mapped onto a one-dimensional map
θn+1 = F(θn) which is non-linear for the non-zero perturbationAn 6= 0. One can show
that in such a representation, the expression (13) is directly related to the stretching of the
phase, dθn+1/dθn = D2

n. Therefore, the original quantum problem is reduced to the study
of the properties of a one-dimensional time-dependent map and its tangent space.

Due to correlations in the sequenceθn, the expression (15) cannot be evaluated directly.
However, it is possible to construct an effective map for two successive kicks of the single
map (13) and neglect the correlations between the phasesθn+2 and θn near the resonance
q = qcr − δ ≈ qcr . Applying the resulting two-step map [9] to the present case allows us to
estimate the Lyapunov exponent forδ � 1, using the expansion inW = Anδ/sinµ0, with
successive averaging overθn, leading to

γ ≈ Q δ2ε2
2

µ2
0 sin2µ0

. (16)

The factorQ stands for the probability for a dimer of the second kind (with energyε2) to
appear. In figure 5 we compare the analytical result (16) (solid line) with the numerical
data obtained from the map of (13) and (14) (circles) after iterating up to 4000 000 time
steps and averaging over more than 1000 realizations of the random kick strengthsAn, for
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Figure 5. The numerical (circles) and analytical estimation (solid line) of the Lyapunov exponent
for nearly resonant states. We useqcr = 11.4. We observe good agreement.

the case whereQ = 0.5, ε = 9.758 85 andqcr = 11.4. The agreement between the theory
and numerical data is extremely good as seen in figure 5, verifying that expression (16) is
valid for δ � 1.

From equation (16) we determine the dependence of the inverse of the localization length
for the near-resonant states, and the way in which it changes when the system parameters
change. We note that the higher the order of the resonance,q � 1 (i.e. the higherk in
[(2k−1)π/2, (2k+1)π/2]), the larger the localization length, and thus—it is expected—the
better the transport properties. Such a behaviour ofl(q) is expected since forq � 1 the
second term ofvn (whereq appears in the denominator) in equation (2) becomes negligible,
leading to a tight-binding equation with zero on-site potential. The localization length
increases also whenε is decreased towards zero. This is easily comprehended since when
ε1 = ε2 = 0 we recover the properties of the perfect lattice. Finally, as the concentration
Q of dimers decreases, the value of the localization length for the near-resonant states
increases.

3. Transport properties

In this section we examine the transport properties of our system by studying the behaviour
of the transmission coefficient. We assume that the system of equation (2) is a sample
consisting ofL lattice points with two identical semi-infinite perfect leads on either side.
As a result, the left-hand lead extends over the range−∞ < n 6 0, the sample extends
over the range 16 n 6 L, and the right-hand lead extends over the rangeL+ 1< n <∞.
The purpose of these leads is to carry the incoming, the reflected and the transmitted waves.
HereE (see equation (1)) is the Fermi energy, and without any loss of generality we choose
εn = 0 everywhere in the leads.

In order to calculate the transmission amplitudetL of a segment containingL sites we
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inject a particle from−∞ with an energyẼ = 2 cosq towards the sample. While the
particle passes through the sample it undergoes multiple elastic scattering. Eventually, it
comes out of the sample from the right-hand end with amplitudetL. Following Pichard
[12] we write the transmission coefficientTL = |tL|2 in terms of the matrix elements of the
total transfer matrixPL =

∏L
n=1Mn as

TL = 4|sinq|2
|(PL)21− (PL)12+ (PL)22eiq − (PL)11e−iq |2 . (17)

In the Hamiltonian map approach, the above system corresponds to the parametric linear
oscillator of section 2.2 where the strengthAn of the instant linear kick (see equation (9))
is equal to zero for timest 6 0 or t > L + 1 describing free rotations in the phase plane,
while in the time interval 16 t 6 L the strengthAn is determined by the disordered site
energyεn of the underlying one-dimensional Schrödinger equation (1).

In order to establish a relation for the transmission coefficient in the framework of our
Hamiltonian map approach, we recast the two successive maps of equations (9) and (10) as
the following two-dimensional mapQn:(

xn+1

pn+1

)
=
(

cosµ0+ An sinµ0 sinµ0

An cosµ0− sinµ0 cosµ0

)(
xn
pn

)
(18)

which is related to the transfer matrixMn defined in equation (3) through a similarity
transformationR:

Qn = RMnR
−1 R =

(
1 0

cosµ0/sinµ0 −1/sinµ0

)
. (19)

From the above equation (19) and equation (17), one obtains for the transmission coefficient
TL of a system withL scatterers:

TL = 4

((FL)
2
11+ (FL)221)+ ((FL)212+ (FL)222)+ 2

(20)

where the matrixFL is the product transfer matrix, i.eFL =
∏L
n=1Qn. From equation (20)

we see that the sum inside the first parentheses in the denominator is equal to the inner
product of the vector

v(t = L) = FL
(

1
0

)
i.e., to the modulus squared of the vector

v(0) =
(

1
0

)
evolved under the dynamical map (18) (or equivalently under the map of (9) and (10))
for time t = L, in the phase space of the parametric linear oscillator described by the
Hamiltonian (12). Similarly, the sum inside the second parentheses in the denominator in
equation (20) corresponds to the modulus squared after the evolution for timet = L of the
initial vector

u(0) =
(

0
1

)
.

It is interesting to note that the initial vectorsv(0), u(0) correspond to the unit vectors
pointing in the two perpendicular directions on the phase-space plane.

Using these observations, we can give a geometrical interpretation for equation (20)
namely that it relatesTL to areas in the phase space of the two-dimensional Hamiltonian
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(a)

(b)

Figure 6. The transmission coefficient (averaged over more than 10 000 realizations) as a
function ofq = E2 for a system withε1 = 0, ε2 = 9.758 85. (a)Q = 0.5 andqcr = 5.44, corres-
ponding to a resonance inside the second band. (b)Q = 0.5 andqcr = 33.13, corresponding
to a resonance inside the tenth energy band. We note that with respect to (a) the band of states
with T ≈ 1 is wider. (c)Q = 0.2 andqcr = 5.44, corresponding to a resonance inside the
second energy band. We note that with respect to (a) we now have more states withT ≈ 1.

map (12). In particular, we can interpret the sum inside each set of parentheses in the
denominator as the area of a circle described by a radiusr1, r2 which is given by the time
evolution (under the map (18)) of the initial vectors(r1,2, θ1,2)t=0 = (1, 0), (1, π/2). Thus
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(c)

Figure 6. (Continued)

equation (20) can be rewritten in the following form:

TL = 4π

πr2
1 + πr2

2 + 2π
= 2S0

tot

S0
tot + SLtot

(21)

whereSLtot = SL1 + SL2 is the sum of the areas defined by the radiusr1, r2 at time t = L. In
the case of a perfect lattice where we have simple rotations of the initial vectors(r1,2, θ1,2)

0,
the areas defined after timeL will be the same:SLtot = S0

tot = 2π , and henceTL = 1.
Using equation (13) we can write equation (21) in a way that it is more tractable for

numerical calculations, i.e.

TL = 4
/(L−1∏

n=0

(D(1)
n )

2+
L−1∏
n=0

(D(2)
n )

2+ 2

)
(22)

where theDi=1,2 correspond to the initial conditions(ri, θi)0 = (1, 0), (1, π/2) respectively.
The results that we have obtained so far provide an exact, although non-closed, analytical

description of any one-dimensional system that can be written in the tight-binding form of
equation (2). We will now evaluate them for the specific case of RDKP to describe those
relevant features of the transmission coefficient that may be the fingerprint of extended
states.

In figures 6(a) and 6(b) we show the numerical results for a system of 10 000 scatterers
after averaging over more than 10 000 different realizations of the disordered sample. We
take the values ofε1 = 0 andε2 = 9.758 85 and the defect concentrationQ = 0.5, i.e. the
most random case. In figure 6(a) we used the critical energyqcr = 5.443 223 lying inside
the second zone of the spectrum, while in figure 6(b) we usedqcr = 33.13 lying inside the
tenth zone. We note that states close to the resonant energies have very good transmission
properties, similar to those at the resonant energy where the transmission coefficientT is
equal to one. This is compatible with the findings of the random-dimer model with one
band (the tight-binding approximation) [8]. Moreover, in the RDKP model, the width of the
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peaks depends on the order of the resonance, as mentioned previously (see also [10]). From
the comparison between figure 6(a) and figure 6(b) we see that the higher the resonance,
the wider the band of states withT ≈ 1. In figure 6(c) we present results for a different
defect concentrationQ in order to study the dependence of the transmission coefficient on
Q. We use the same values ofε1 andε2, andQ = 0.2. By comparison with figure 6(a) we
conclude that asQ decreases the number of transparent states, i.e states with transmission
coefficients close to one,T ∼ 1, increases, in perfect agreement with the results of the
previous section for the localization length of nearly resonant states.

4. Conclusions

We have studied a Kronig–Penney model with binary on-site disorder randomly assigned
to every second site. For such a model it was found [10] that there exist an infinite number
of special energiesEcr = q2

cr at which transparent states appear. We recover these results
using a new approach based on classical Hamiltonian maps. We have generalized our results
for a N -mer case, and obtained a simple expression for the resonant energy values. We
constructed a phase diagram in theεcr–N plane which exhibits three distinct regions: one
where no resonant states appear; a second that contains some of the resonant states; and
a third that contains all possible resonant states for different correlated blocks of sizeN .
This separation into three distinct regions is valid only in the first zone, and as a result
it might have some relevance to the low-temperature system properties. Our dynamical
system approach maps resonant delocalized states to bounded trajectories, while localized
states are represented by unbounded trajectories in the phase space(p, x). Making use of an
expansion in the vicinity of the resonance, we derived an analytical expression of equation
(16) for the Lyapunov exponent for the nearly resonant states. Finally, in the framework
of our Hamiltonian map we established a simple geometrical picture for the transmission
coefficient showing that it corresponds to the evolution of areas in the phase space of a linear
parametric oscillator. Using these last results we calculated the transmission coefficient that
exhibits peaks up toT = 1 for energy values equal to the resonant ones. Near the resonant
energies there are nearly transparent states with large transmission coefficients, the number
of which is inversely proportional to the defect concentrationQ and increases with the
resonance order. The properties of the RDKP model that were analysed in this work could
be used in mesoscopic quasi-one-dimensional studies.
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